翻訳と辞書
Words near each other
・ Castagneto Po
・ Castagnetti
・ Castagniers
・ Castagniers Abbey
・ Castagnito
・ Castagno d'Andrea
・ Castagnola
・ Castagnola's
・ Castagnola-Cassarate
・ Cassolnovo
・ Cassolus
・ Casson
・ Casson (disambiguation)
・ Casson Ferguson
・ Casson handle
Casson invariant
・ Casson Trenor
・ Casson, Loire-Atlantique
・ Cassone
・ Cassone della Torre
・ Cassoneca
・ Cassongue
・ Cassop
・ Cassop Vale
・ Cassop-cum-Quarrington
・ Cassope
・ Cassopolis, Michigan
・ Cassotis
・ Cassou Department
・ Cassoulet


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Casson invariant : ウィキペディア英語版
Casson invariant
In 3-dimensional topology, a part of the mathematical field of geometric topology, the Casson invariant is an integer-valued invariant of oriented integral homology 3-spheres, introduced by Andrew Casson.
Kevin Walker (1992) found an extension to rational homology 3-spheres, called the Casson–Walker invariant, and Christine Lescop (1995) extended the invariant to all closed oriented 3-manifolds.
==Definition==
A Casson invariant is a surjective map
λ from oriented integral homology 3-spheres to Z satisfying the following properties:
*λ(S3) = 0.
*Let Σ be an integral homology 3-sphere. Then for any knot ''K'' and for any integer ''n'', the difference
::\lambda\left(\Sigma+\frac\cdot K\right)-\lambda\left(\Sigma+\frac\cdot K\right)
:is independent of ''n''. Here \Sigma+\frac\cdot K denotes \frac Dehn surgery on Σ by ''K''.
*For any boundary link ''K'' ∪ ''L'' in Σ the following expression is zero:
::\lambda\left(\Sigma+\frac\cdot K+\frac\cdot L\right) -\lambda\left(\Sigma+\frac\cdot K+\frac\cdot L\right)-\lambda\left(\Sigma+\frac\cdot K+\frac\cdot L\right) +\lambda\left(\Sigma+\frac\cdot K+\frac\cdot L\right)
The Casson invariant is unique (with respect to the above properties) up to an overall multiplicative constant.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Casson invariant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.